• Prototype | Morbidostat: Unraveling Antimicrobial Resistance

    Morbidostat is a computer-controlled continuous culture device that automatically adjusts drug concentration to maintain constant growth inhibition in microbial cultures. As bacteria acquire mutations that give them resistance against drugs, they are able to tolerate higher drug concentrations and grow faster, thus removing selective pressure, the driving force of evolution. To compensate for this, morbidostat increases drug concentration sufficiently to keep bacteria at their original growth rate, therefore maintaining selective pressure over time. This system allows for data acquisition to model microbial evolution under antimicrobial stress, optimize biocide dosage strategies and develop highly antimicrobial-resistant strains used to test the performance of new biocides, among other applications.

     

  • Software | DOTcvpSB: Matlab toolbox for Dynamic Optimization in Systems Biology

    DOTcvpSB is a toolbox written in MATLAB that uses the control vector parameterization (CVP) method to handle continuous and mixed integer dynamic optimization problems. DOTcvpSB has been successfully applied to several problems in systems biology and bioprocess engineering.

    More information here.

  • Software | Fish-T-TaB Simulator: Temperature simulator for fish stored in tubs and boxes

    This model was developed and applied by members of the EFSA Working Group on the transport/storage of fresh fishery products during the preparatory work on the BIOHAZ Scientific Opinion on the use of "tubs" for transporting and storing fresh fishery products (EFSA-Q-2019-00053). Heat transfer modeling was applied to estimate surface temperature of fish during the temperature-related processes of cooling and subsequently maintaining the chill temperature of the fish (‘cooling’ process) and/or maintaining the chill temperature (‘keeping’ process) for fish kept in ice (in boxes) versus in water and ice (in tubs) under similar transport/storage conditions.

    More information here.

  • Capabilities | Design of disinfection procedures and modeling for the prevention of antimicrobial resistance

    Development of chemical (combinations of disinfectants, essential oils) and biological (enzymes, phages) strategies that are effective for removing monospecific and mixed microbial biofilms from surfaces in the food industry. Biocide testing and development of better biocide dosage strategies for the food industry, ensuring food safety while avoiding antimicrobial resistance acquisition.

     

  • Software | Kinetics of E. coli inactivation by benzalkonium chloride v1.0

    This model and associated code was developed to optimize disinfection protocols and minimize bacterial resistance. This model was applied in the following journal article: Optimization of E. coli Inactivation by Benzalkonium Chloride Reveals the Importance of Quantifying the Inoculum Effect on Chemical Disinfection. Front. Microbiol., 26 June 2018. https://doi.org/10.3389/fmicb.2018.01259

    More information and access to the code here.

  • Software | GenSSI: toolbox for structural identifiability analysis of biological models

    GenSSI is a toolbox that requires MATLAB and Symbolic Math Toolbox. It offers a technique for studying structural identifiability using iterative Lie derivatives and identifiability tableaus.

    More information here,

  • Software | saCeSS: a parallel global optimization library

    The saCeSS library allows solving non-linear programming (NLP) and mixed-integer non-linear programming (MINLP) problems. It also offers efficient local solvers for nonlinear parameter estimation problems associated with complex models (e.g. those described by differential equations).

    More information here.